Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
Evaluate the following limits after identifying the indeterminate form. Use Hospital's rule. d) lim x_0+ (xe^(2x) + 1)^(5/x) e)...Asked by Tommy
Evaluate the following limits after identifying the indeterminate form. Use Hospital's rule.
d) lim x_0+ (xe^(2x) + 1)^(5/x)
e) lim x_(Pi/2)+ (1 + sec3x)^(cot3x)
Thank you!
d) lim x_0+ (xe^(2x) + 1)^(5/x)
e) lim x_(Pi/2)+ (1 + sec3x)^(cot3x)
Thank you!
Answers
Answered by
Steve
Consider (xe^(2x) + 1)^(5/x) โ 1<sup>oo</sup>
Now, ln(x) is continuous for x>0, so use that to lower the complexity
ln(xe^(2x) + 1)^(5/x) = 5/x * ln(xe^(2x) + 1)
That's now oo * 0, which we can change to 0/0 by writing it as
ln(xe^(2x) + 1)/(x/5)
Now we can apply the Rule, to get
[e^2x (2x+1)/(e^2x+1)] / (1/5) = 5
Now, that means ln(limit) = 5, and the limit is e^5
Use the same trick to change
(1 + sec3x)^(cot3x) โ oo<sup>0</sup>
to get the limit = 1
Now, ln(x) is continuous for x>0, so use that to lower the complexity
ln(xe^(2x) + 1)^(5/x) = 5/x * ln(xe^(2x) + 1)
That's now oo * 0, which we can change to 0/0 by writing it as
ln(xe^(2x) + 1)/(x/5)
Now we can apply the Rule, to get
[e^2x (2x+1)/(e^2x+1)] / (1/5) = 5
Now, that means ln(limit) = 5, and the limit is e^5
Use the same trick to change
(1 + sec3x)^(cot3x) โ oo<sup>0</sup>
to get the limit = 1
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.