Asked by TOMO
Consider the area between the graphs x+4y=14 and x+7=y^2. This area can be
computed in two different ways using integrals.
First of all it can be computed as a sum of two integrals
They ask to use two integrals so i put f(x) from -7 to 2 which is correct
but for g(x) i put 2 to 14 for some reason 14 is wrong. I also put
f(x)=sqrt(x+7) and g(x)= (14-x)/4 and both are wrong wrong. I got
everything else correct except for these and I don't what I did wrong.
computed in two different ways using integrals.
First of all it can be computed as a sum of two integrals
They ask to use two integrals so i put f(x) from -7 to 2 which is correct
but for g(x) i put 2 to 14 for some reason 14 is wrong. I also put
f(x)=sqrt(x+7) and g(x)= (14-x)/4 and both are wrong wrong. I got
everything else correct except for these and I don't what I did wrong.
Answers
Answered by
jai
first, graph the two equations (in one cartesian plane)
then get the points of intersection:
x+7=y^2 *this is the second equation
x=y^2-7
substitute this to the first:
y^2-7+4y=14
y^2+4y-21=0
(y+7)(y-3)=0
y=-7 and y=3
substitute these back to obtain corresponding values of x:
*if y=-7,
x=(-7)^2-7=42
*if y=3,
x=(3)^2-7=2
therefore, points of int are (42,-7) and (2,3)
looking at the graph, i suggest you do vertical strips (that is, dx),, divide the whole area into region 1 (left side) and region 2 (right side),, after you do this, get the boundaries.
Region 1:
for x: the boundaries are the graph of the parabola (that is x=y^2-7) and the x-coord of the first point of int (x=2)
for y: since parabola is symmetric with respect to x-axis, y is from -3 to 3.
the area of region 1 is:
integral[from -3 to 3](integral[from y^2-7 to 2] dx)dy)
*note: this is double integral since A=dxdy
Region 2:
for region 2, i suggest you do horizontal strips (that is, dy) ,,then get the boundaries:
for x: from x-coord of first point of int (x=2) to x-ccord of 2nd point of int (x=42)
for y: from the parabola (y=sqrt(x+7)) to the line (y=(14-x)/4)
the area of region 2 is:
integral[from 2 to 42](integral[from sqrt(x+7) to (14-x)/4] dy)dx)
i'll leave the integration calculation to you,, add the areas and you'll finally get the whole area.
so there,, sorry for long explanation,,
i hope i was able to help,, =)
then get the points of intersection:
x+7=y^2 *this is the second equation
x=y^2-7
substitute this to the first:
y^2-7+4y=14
y^2+4y-21=0
(y+7)(y-3)=0
y=-7 and y=3
substitute these back to obtain corresponding values of x:
*if y=-7,
x=(-7)^2-7=42
*if y=3,
x=(3)^2-7=2
therefore, points of int are (42,-7) and (2,3)
looking at the graph, i suggest you do vertical strips (that is, dx),, divide the whole area into region 1 (left side) and region 2 (right side),, after you do this, get the boundaries.
Region 1:
for x: the boundaries are the graph of the parabola (that is x=y^2-7) and the x-coord of the first point of int (x=2)
for y: since parabola is symmetric with respect to x-axis, y is from -3 to 3.
the area of region 1 is:
integral[from -3 to 3](integral[from y^2-7 to 2] dx)dy)
*note: this is double integral since A=dxdy
Region 2:
for region 2, i suggest you do horizontal strips (that is, dy) ,,then get the boundaries:
for x: from x-coord of first point of int (x=2) to x-ccord of 2nd point of int (x=42)
for y: from the parabola (y=sqrt(x+7)) to the line (y=(14-x)/4)
the area of region 2 is:
integral[from 2 to 42](integral[from sqrt(x+7) to (14-x)/4] dy)dx)
i'll leave the integration calculation to you,, add the areas and you'll finally get the whole area.
so there,, sorry for long explanation,,
i hope i was able to help,, =)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.