Asked by JuanPro
Consider a Poisson process with rate λ. Let N be the number of arrivals in (0,t] and M be the number of arrivals in (0,t+s], where t>0,s≥0.
In each part below, your answers will be algebraic expressions in terms of λ,t,s,m and/or n. Enter 'lambda' for λ and use 'exp()' for exponentials. Do not use 'fac()' or '!' for factorials. Follow standard notation.
For 0≤n≤m, the conditional PMF pM∣N(m∣n) of M given N is of the form ab! for suitable algebraic expressions in place of a and b.
a=- unanswered
b=- unanswered
For 0≤n≤m, the joint PMF pN,M(n,m) of N and M is of the form cn!d! for suitable algebraic expressions in place of c and d.
c=- unanswered
d=- unanswered
For 0≤n≤m, the conditional PMF pN|M(n|m) of N given M is of the form f⋅g!n!h! for suitable algebraic expressions in place of f, g, and h.
f=- unanswered
g=- unanswered
h=- unanswered
E[NM]=- unanswered
In each part below, your answers will be algebraic expressions in terms of λ,t,s,m and/or n. Enter 'lambda' for λ and use 'exp()' for exponentials. Do not use 'fac()' or '!' for factorials. Follow standard notation.
For 0≤n≤m, the conditional PMF pM∣N(m∣n) of M given N is of the form ab! for suitable algebraic expressions in place of a and b.
a=- unanswered
b=- unanswered
For 0≤n≤m, the joint PMF pN,M(n,m) of N and M is of the form cn!d! for suitable algebraic expressions in place of c and d.
c=- unanswered
d=- unanswered
For 0≤n≤m, the conditional PMF pN|M(n|m) of N given M is of the form f⋅g!n!h! for suitable algebraic expressions in place of f, g, and h.
f=- unanswered
g=- unanswered
h=- unanswered
E[NM]=- unanswered
Answers
Answered by
Mary
a = (lambda*s)^(m-n)*e^(-lambda*s)
b = m-n
c = lambda^m*s^(m-n)*t^n*e^(-lambda*(s+t))
d = m-n
f = (s^(m-n)*t^n)/((s+t)^m)
g = m
h = m-n
E[NM] = (lambda*t)*(lambda*s)+lambda*t+(lambda*t)^2
ALL CORRECT!!!
b = m-n
c = lambda^m*s^(m-n)*t^n*e^(-lambda*(s+t))
d = m-n
f = (s^(m-n)*t^n)/((s+t)^m)
g = m
h = m-n
E[NM] = (lambda*t)*(lambda*s)+lambda*t+(lambda*t)^2
ALL CORRECT!!!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.