Asked by KAREEN
A particle is moving along the parabola 4y = (x + 2)^2 in such a way that
its x-coordinate is increasing at a constant rate of 2 units per second. How
fast is the particle's distance to the point (-2, 0) changing at the moment
that the particle is at the point (2, 4)?
its x-coordinate is increasing at a constant rate of 2 units per second. How
fast is the particle's distance to the point (-2, 0) changing at the moment
that the particle is at the point (2, 4)?
Answers
Answered by
Reiny
Let the point be at the position P(x,y)
The parabola has vertex at (-2,0), so the question is how fast is P moving away from the vertex.
Let the distance be D
D^2 = (x+2)^2 + y^2
= (x+2)^2 + (x+2)^4/16
2D dD/dt = 2(x+2) dx/dt + (1/4)(x+2)^3 dx/dt
dD/dt = [2(x+2) dx/dt + (1/4)(x+2)^3 dx/dt]/(2D)
when x = 2
D^2 = 16 + 256/16
= 32
D = √32
dD/dt = [2(4)(2) + (1/4(64)(2)]/(2√32)
= 24/√32 = 6/√2 = appr. 4.243 units per second
check my arithmetic
The parabola has vertex at (-2,0), so the question is how fast is P moving away from the vertex.
Let the distance be D
D^2 = (x+2)^2 + y^2
= (x+2)^2 + (x+2)^4/16
2D dD/dt = 2(x+2) dx/dt + (1/4)(x+2)^3 dx/dt
dD/dt = [2(x+2) dx/dt + (1/4)(x+2)^3 dx/dt]/(2D)
when x = 2
D^2 = 16 + 256/16
= 32
D = √32
dD/dt = [2(4)(2) + (1/4(64)(2)]/(2√32)
= 24/√32 = 6/√2 = appr. 4.243 units per second
check my arithmetic
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.