Asked by sydney
An athlete executing a long jump, leaves the ground at a 30 degree angle with the ground and travels 8.90 meters horizontally in 1.1 seconds. What was the takeoff speed of the athlete along the diagonal?
Answers
Answered by
Henry
D = Xo*t = 8.90 m
Xo * 1.1 = 8.9
Xo = 8.9/1.1 = 8.09 m/s = Hor. component
of initial velocity.
Vo = Xo/cos A = 8.09/cos30=9.34 m/s[30o]
= Initial velocity or take-off speed.
Xo * 1.1 = 8.9
Xo = 8.9/1.1 = 8.09 m/s = Hor. component
of initial velocity.
Vo = Xo/cos A = 8.09/cos30=9.34 m/s[30o]
= Initial velocity or take-off speed.
Answered by
Anonymous
Δy = 0, assuming cannonball falls back down to same level
a = -g
vi = vsinθ
Δy = vi(t) + ½a(t)²
0 = v(sinθ)(t) + ½(-g)(t)²
0 = t(vsinθ - ½gt)
Clearly, there are two points in time when the projectile is at ground level.
t = 0, is the time when the projectile is launched.
let 0 = vsinθ - ½gt to find out when it lands
½gt = vsinθ
t = 2vsinθ/g
This result can also be obtained by showing that the initial vertical speed is equal to the final vertical speed but opposite in direction:
vf² = vi² + 2gΔy
since change in height is 0,
vf² = vi²
vf = -vi, since the projectile moves up on the way up and down on the way down
Using: a = (vf - vi)/t
t = (vf - vi)/a
t = (-vi - vi)/a
t = -2vi/a
t = -2vsinθ/-g
t = 2vsinθ/g
[Range]
To determine range, analyse motion in the horizontal or x-direction:
Δx = vt, where v is the constant horizontal speed of the projectile
Δx = (vcosθ)(2vsinθ/g)
Δx = v²2cosθsinθ/g
Using the identity: sin(2θ) = 2cosθsinθ,
Δx = v²sin(2θ)/g
v is launch speed
θ is launch angle
g is acceleration due to gravity (9.8 m/s²)
[Launch Speed]
v = sqrt(Δxg/sin(2θ))
Multiply by 1.06 and use new speed in distance equation
a = -g
vi = vsinθ
Δy = vi(t) + ½a(t)²
0 = v(sinθ)(t) + ½(-g)(t)²
0 = t(vsinθ - ½gt)
Clearly, there are two points in time when the projectile is at ground level.
t = 0, is the time when the projectile is launched.
let 0 = vsinθ - ½gt to find out when it lands
½gt = vsinθ
t = 2vsinθ/g
This result can also be obtained by showing that the initial vertical speed is equal to the final vertical speed but opposite in direction:
vf² = vi² + 2gΔy
since change in height is 0,
vf² = vi²
vf = -vi, since the projectile moves up on the way up and down on the way down
Using: a = (vf - vi)/t
t = (vf - vi)/a
t = (-vi - vi)/a
t = -2vi/a
t = -2vsinθ/-g
t = 2vsinθ/g
[Range]
To determine range, analyse motion in the horizontal or x-direction:
Δx = vt, where v is the constant horizontal speed of the projectile
Δx = (vcosθ)(2vsinθ/g)
Δx = v²2cosθsinθ/g
Using the identity: sin(2θ) = 2cosθsinθ,
Δx = v²sin(2θ)/g
v is launch speed
θ is launch angle
g is acceleration due to gravity (9.8 m/s²)
[Launch Speed]
v = sqrt(Δxg/sin(2θ))
Multiply by 1.06 and use new speed in distance equation
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.