Asked by Jalea
                The coordinates of the vertices of a quadrilateral are R(-1,3) S(3,3) T(5,-1), and U(-2,-1).Find the perimeter of the quadrilateral. Round to the nearest tenth.
            
            
        Answers
                    Answered by
            Mathmat
            
    Graph it out and use the Pythagorean theorem to find 2 sides. Multiply those together. 
    
                    Answered by
            Steve
            
    The sides have lengths
RS: √((3+1)^2+(3-3)^2) = 4
ST: √((5-3)^2+(-1-3)^2) = √20
TU: √((2-5)^2+(-1+1)^2) = 3
UR: √((-2+1)^2+(-1-3)^2) = √17
so, add them up
    
RS: √((3+1)^2+(3-3)^2) = 4
ST: √((5-3)^2+(-1-3)^2) = √20
TU: √((2-5)^2+(-1+1)^2) = 3
UR: √((-2+1)^2+(-1-3)^2) = √17
so, add them up
                    Answered by
            Momo
            
    19.6 units
    
                    Answered by
            Y
            
    TU is wrong it's (square root) (5+2)squared+(-1+1)squared=7
    
                    Answered by
            conner15
            
    32
    
                    Answered by
            jasmin
            
    support veganism
    
                    Answered by
            Anonymous
            
    The coordinates of the vertices of a quadrilateral are A(-1, 3), B(3, 3), C(5, -
1), and D(-2, -1). Find the perimeter of the quadrilateral.
b. What type of triangle is formed by the vertices A(-2, 1), B(3, 2), C(0, -2).
    
1), and D(-2, -1). Find the perimeter of the quadrilateral.
b. What type of triangle is formed by the vertices A(-2, 1), B(3, 2), C(0, -2).
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.