Asked by Nick
                A crippled rook can move on a chessboard in the following way: from a square, it can move to an adjacent square sharing a common side, and every two consecutive moves must be at right angles (i.e., the rook makes a 90∘turn at every move).
A cycle is a sequence of squares which start and end at the same square, and traces out a valid path that the crippled rook can move according to the rules above. A non-intersecting cycle consists of pairwise distinct squares, with the sole exception of the starting and ending square.
What is the length of the longest possible cyclic, non-intersecting route of a crippled rook on a 15×15 chessboard?
            
        A cycle is a sequence of squares which start and end at the same square, and traces out a valid path that the crippled rook can move according to the rules above. A non-intersecting cycle consists of pairwise distinct squares, with the sole exception of the starting and ending square.
What is the length of the longest possible cyclic, non-intersecting route of a crippled rook on a 15×15 chessboard?
Answers
                    Answered by
            Anonymous
            
    203
    
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.