Asked by Sumare
How do I find the prime factorization of number 2002?
Answers
Answered by
Bosnian
2002 = 2 * 7 * 11 * 13
Answered by
Sumare
I meant what are the steps to finding the Answer.
Answered by
MathMate
From the knowledge of divisibility, we know that 2 is a factor (all even numbers).
That reduces
2002=2*1001
Again, the difference of sums of alternate digits equals zero (1+0)-(0+1)=0, so it is divisible by 11.
That makes
2002=2*11*91
We should (try to) know all prime factorization for numbers below 100, which in this case is 7*13=91.
This completes the prime factorization of 2002 to
2002=2*11*7*13
Rule for 7,11 and 13 for large numbers.
By the way,the given example is an excellent demonstration of another property:
If the number is grouped in 3 digits from the right, difference of alternate groups has the same mod as the number itself with respect to divisors 7,11 & 13.
For example to factorize 78169,
we know from divisibility rules that it is not divisible by 2,3,5,11.
Now form groups of 3 digits: 78 & 169.
Take the difference 169-78=91.
Since we know that 91 is divisible by 7 and 13 (but not 11), we conclude that 78169 is divisible by 7 and 13. The prime factorization is then:
78169=7*13*859
(note: 859 is prime).
That reduces
2002=2*1001
Again, the difference of sums of alternate digits equals zero (1+0)-(0+1)=0, so it is divisible by 11.
That makes
2002=2*11*91
We should (try to) know all prime factorization for numbers below 100, which in this case is 7*13=91.
This completes the prime factorization of 2002 to
2002=2*11*7*13
Rule for 7,11 and 13 for large numbers.
By the way,the given example is an excellent demonstration of another property:
If the number is grouped in 3 digits from the right, difference of alternate groups has the same mod as the number itself with respect to divisors 7,11 & 13.
For example to factorize 78169,
we know from divisibility rules that it is not divisible by 2,3,5,11.
Now form groups of 3 digits: 78 & 169.
Take the difference 169-78=91.
Since we know that 91 is divisible by 7 and 13 (but not 11), we conclude that 78169 is divisible by 7 and 13. The prime factorization is then:
78169=7*13*859
(note: 859 is prime).
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.