Asked by lin
Find the number of polynomials f(x) that satisfy all of the
following conditions:
f(x) is a monic polynomial,
f(x) has degree 1000,
f(x) has integer coefficients,
f(x) divides
f(2x^3+x)
following conditions:
f(x) is a monic polynomial,
f(x) has degree 1000,
f(x) has integer coefficients,
f(x) divides
f(2x^3+x)
Answers
Answered by
Writeacher
http://www.google.com/search?q=Find+the+number+of+polynomials+f(x)+that+satisfy+all+of+the+following+conditions%3A&oq=Find+the+number+of+polynomials+f(x)+that+satisfy+all+of+the+following+conditions%3A&aqs=chrome.0.57j62.4880j0&sourceid=chrome&ie=UTF-8#sclient=psy-ab&q=brilliant+Find+the+number+of+polynomials+f(x)+that+satisfy+all+of+the+following+conditions:&oq=brilliant+Find+the+number+of+polynomials+f(x)+that+satisfy+all+of+the+following+conditions:&gs_l=serp.3...11592.13491.0.13851.10.10.0.0.0.0.220.1571.0j9j1.10.0...0.0.0..1c.1.17.psy-ab.YdKvWIF7Svo&pbx=1&bav=on.2,or.r_cp.r_qf.&bvm=bv.48705608,d.eWU&fp=6ca84d98d48f74bf&biw=1440&bih=706
Answered by
exactly
Step 1; Factor f(x) = (x - r_1)...(x - r_1000)
Step 2: Hint hint: something about roots and circle centered at r_i of radius 2 |r_i|^3
Step 3: triangle inequality --> implication: same argument.
Step 4: Verify
This is a brilliant question, therefore i will not give full answer. i hope the hints are enough to set one on the right track.
Step 2: Hint hint: something about roots and circle centered at r_i of radius 2 |r_i|^3
Step 3: triangle inequality --> implication: same argument.
Step 4: Verify
This is a brilliant question, therefore i will not give full answer. i hope the hints are enough to set one on the right track.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.