Asked by lin
Find the smallest n such that for some prime p, at least 20 of the numbers 1,2,...,n are quadratic non-residues
modulo p.
modulo p.
Answers
Answered by
exactly
I suppose this question isn't live anymore. Anyways next time please don't post brilliant problems (:
Well, here's a few hints for you to work out and be on the right track:
Step 1: quadratic reciprocity and CRT
Step 2: incorporate dirichlet's theorem into this.
Well, you can then see obviously that {3,5,6,7,10,11,12,13,14,17,19,20,22,23,24,26,27,28,29,31}. Now just try to prove that the desired answer is minimal. This is simple. Show that 2 and 3 MUST be quadratic residues.
Well, here's a few hints for you to work out and be on the right track:
Step 1: quadratic reciprocity and CRT
Step 2: incorporate dirichlet's theorem into this.
Well, you can then see obviously that {3,5,6,7,10,11,12,13,14,17,19,20,22,23,24,26,27,28,29,31}. Now just try to prove that the desired answer is minimal. This is simple. Show that 2 and 3 MUST be quadratic residues.
Answered by
exactly
Ok to clarify, the show that 2 and 3 must be quadratic residues part is to find the minimal.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.