Asked by James
Find the arc length of the curve y^3=8x^2 fr0m x=1 to x=8.
Answers
Answered by
Steve
since y^3 = 8x^2,
y = 2x^(2/3)
y' = 4/3 x^(-1/3)
y'^2 = 16/(9x^(2/3))
arc length is thus
∫[1,8] √(1+16/(9x^(2/3))) dx
u=x^-2/3
then let v = u^1/2
then let 4w = 3tanv
and you finally wind up with
1/27 √(9+16/x^2/3) (9x + 16x^1/3) [1,8]
= 1/27 ((√(9+4)(72+32))-(√(16+9)(9+16)))
= 1/27 (104√13 - 125)
y = 2x^(2/3)
y' = 4/3 x^(-1/3)
y'^2 = 16/(9x^(2/3))
arc length is thus
∫[1,8] √(1+16/(9x^(2/3))) dx
u=x^-2/3
then let v = u^1/2
then let 4w = 3tanv
and you finally wind up with
1/27 √(9+16/x^2/3) (9x + 16x^1/3) [1,8]
= 1/27 ((√(9+4)(72+32))-(√(16+9)(9+16)))
= 1/27 (104√13 - 125)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.