Ask a New Question

Asked by rohit

What is the smallest positive integer with exactly 12 (positive) divisors?
12 years ago

Answers

Answered by Steve
36 (2^2 3^2) seems likely
1 2 3 4 6 9 12 18 36 nope

48 (2^4 3^1)?
1 2 3 4 6 8 12 16 24 48 nope

72 (2^3 3^2)?
1 2 3 4 6 8 9 12 18 24 36 72
Yes
12 years ago
There are no AI answers yet. The ability to request AI answers is coming soon!

Submit Your Answer


We prioritize human answers over AI answers.

If you are human, and you can answer this question, please submit your answer.

Related Questions

What is the smallest positive integer which, when divided by 6 gives remainder 1 and when divided by... What is the smallest positive integer that is the sum of a multiple of $15$ and a multiple of $21$?... What is the smallest positive composite integer? What is the smallest positive integer which gives 1 as a remainder when divided by the numbers 2,3,4... What is the smallest positive integer? What is the smallest positive integer $n$ such that all the roots of $z^4 + z^2 + 1 = 0$ are $n^{\te... What is the smallest positive integer value n, for which 2700n is a multiple of 35? The smallest possible positive value of 1−[(1/w)+(1/x)+(1/y)+(1/z)] where w, x, y, z are odd positiv... What is the smallest positive value of x that satisfies x= Arc cos 1/2 What is the smallest positive 3 digit number that leaves a remainder of 2 when divided by 3, 4, 5 or...
Submit Your Answer

Question

What is the smallest positive integer with exactly 12 (positive) divisors?

Ask a New Question
Archives Contact Us Privacy Policy Terms of Use