Asked by Ashley
A mechanical engineering student wishes to inscribe a rectangle in a quarter circle of radius 2.00 cm. Determine the dimensions of the rectangle that will give it the greatest area.
length in cm =
height in cm =
My attempt on find the relationship between the rectangle and the quarter circle:
Let the base of the rectangle = b
let the height of the rectangle = h
Area of a a rectangle = b*h
Area of a circle =pie*R^2
Quarter of a circle = 1/4 pie R^2
am I on the right track......
is this the correct thought process....
length in cm =
height in cm =
My attempt on find the relationship between the rectangle and the quarter circle:
Let the base of the rectangle = b
let the height of the rectangle = h
Area of a a rectangle = b*h
Area of a circle =pie*R^2
Quarter of a circle = 1/4 pie R^2
am I on the right track......
is this the correct thought process....
Answers
Answered by
Ashley
Would it be safe to say that the the diagonal line in the rectangle could equal r = 2.
so I could use
b^2+ h^2 =r^2
solve for h
h= Square root ( r^2 -b^2)
Area = b^2 * Square root (r^2-b^2)
area = b*(r^2-b^2)^1/2 ....... ????
so I could use
b^2+ h^2 =r^2
solve for h
h= Square root ( r^2 -b^2)
Area = b^2 * Square root (r^2-b^2)
area = b*(r^2-b^2)^1/2 ....... ????
Answered by
Ashley
ok....
so is next step take the first derv of the area
Area of rect '= -1/2(4-b^2) + (4-2^2)^1/2
so is next step take the first derv of the area
Area of rect '= -1/2(4-b^2) + (4-2^2)^1/2
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.