Asked by Reggie
A trough is triangular in cross section, an isosceles triangle with sides of 12 inches, and a top of 10 inches. The trough is 40 inches long. How fast is the depth changing if you are pumping one cubic foot per minute into the trough?
I am having a hard time getting it in terms of h.
I am having a hard time getting it in terms of h.
Answers
Answered by
Reiny
Make a sketch of the cross-section of the isosceles triangle. Draw it some water level, letting the height be h and letting the width of the water level be x
by similar triangles
x/h = 10/12
12x = 10h
x = 5h/6
volume of water = 40(area of triangle)
= 40(1/2)(x)h
= 20(5h/6)(h) = 50/3 h^3
V = (50/3) h^3
dV/dt = 50 h^2 dh/dt
have to watch our units, 1 cubic foot = 12^3 or 1728 cubic inches
1728 = 50 h^2 dh/dt
dh/dt = 1728/(50h^2) = 864/25 inches/minute
by similar triangles
x/h = 10/12
12x = 10h
x = 5h/6
volume of water = 40(area of triangle)
= 40(1/2)(x)h
= 20(5h/6)(h) = 50/3 h^3
V = (50/3) h^3
dV/dt = 50 h^2 dh/dt
have to watch our units, 1 cubic foot = 12^3 or 1728 cubic inches
1728 = 50 h^2 dh/dt
dh/dt = 1728/(50h^2) = 864/25 inches/minute
Answered by
Reggie
wow I was headed that way didn't watch units Thank You very much
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.