Asked by Jon

My previous question:
Verify that (secx/sinx)*(cotx/cscx)=cscx is an identity.

(secx/sinx)*(cotx/cscx)
= (secx/cscx)(cotx/sinx)
= (sinx/cosx)*cotx*(1/sinx)

"The last steps should be obvious"

Not to me. I can convert (sinx/cosx) to tanx if that's even what I'm suppose to do. Is (sinx/cosx)*cotx*(1/sinx) the answer?

Answers

Answered by Damon
I am not sure he is still here

(sinx/cosx)*cotx*(1/sinx)
(sin/cos)*(cos/sin) * (csc)

1 * (csc) = csc

remember csc = 1/sin
Answered by drwls
I skipped that step that tanx*cotx = 1

Related Questions