Question
a box with an open top is to be made from a rectangular piece of tin by cutting equal squares from the corners and turning up the sides. The piece of tin measures 1mx2m. Find the size of the squares that yields a maximum capacity for the box.
So far i have
V=(1-2x)(2-2x)x
So far i have
V=(1-2x)(2-2x)x
Answers
so, figure dV/dx
dV/dx = 2(6x^2-6x+1)
dV/dx = 0 when x = 1/6 (3±√3) = .211 or .789
Now .789 is impossible, since the width is only 1.
so, the cuts are .211m
dV/dx = 2(6x^2-6x+1)
dV/dx = 0 when x = 1/6 (3±√3) = .211 or .789
Now .789 is impossible, since the width is only 1.
so, the cuts are .211m
how did you go from 0= 1/6 (3+-ã3)
dV/dx = 2(6x^2-6x+1
so, dV/dx = 0 when 6x^2-6x+1
solve the quadratic to get X = 1/6 (3±√3)
this is calculus; algebra I should be no problem...
so, dV/dx = 0 when 6x^2-6x+1
solve the quadratic to get X = 1/6 (3±√3)
this is calculus; algebra I should be no problem...
Related Questions
In a rectangular piece of cardboard with a perimeter of 20ft, three parallel and equally spaces crea...
Solve the problem. An open box is to be made from a rectangular piece of tin by cutting two inch squ...
an open box is made by cutting out squares from the corners of a rectangular piece of cardboard and...
A rectangular piece of cardboard 9" x 12" is made into an open box by cutting a 2 1/2" square from e...