Asked by Kieran
a box with an open top is to be made from a rectangular piece of tin by cutting equal squares from the corners and turning up the sides. The piece of tin measures 1mx2m. Find the size of the squares that yields a maximum capacity for the box.
So far i have
V=(1-2x)(2-2x)x
So far i have
V=(1-2x)(2-2x)x
Answers
Answered by
Steve
so, figure dV/dx
dV/dx = 2(6x^2-6x+1)
dV/dx = 0 when x = 1/6 (3±√3) = .211 or .789
Now .789 is impossible, since the width is only 1.
so, the cuts are .211m
dV/dx = 2(6x^2-6x+1)
dV/dx = 0 when x = 1/6 (3±√3) = .211 or .789
Now .789 is impossible, since the width is only 1.
so, the cuts are .211m
Answered by
Kieran
how did you go from 0= 1/6 (3+-ã3)
Answered by
Steve
dV/dx = 2(6x^2-6x+1
so, dV/dx = 0 when 6x^2-6x+1
solve the quadratic to get X = 1/6 (3±√3)
this is calculus; algebra I should be no problem...
so, dV/dx = 0 when 6x^2-6x+1
solve the quadratic to get X = 1/6 (3±√3)
this is calculus; algebra I should be no problem...
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.