Asked by Isaiah
                A box with an open top is to be constructed by cutting a-inch squares from the corners of a rectangular sheet of tin whose length is twice its width. What size sheet will produce a box having a volume of 32 in^3, when a = 2? 
width in
length in
            
            
        width in
length in
Answers
                    Answered by
            Steve
            
    If the original
width is x
length is 2x
With a=2, our new box has volume
(a)(x-2a)(2x-2a) = 32
2(x-4)(2x-4) = 32
2(x-4)(2x-4) - 32 = 0
4x(x-6) = 0
x = 6
So a sheet 6x12 will be cut to a box
2x2x8 with volume = 32
    
width is x
length is 2x
With a=2, our new box has volume
(a)(x-2a)(2x-2a) = 32
2(x-4)(2x-4) = 32
2(x-4)(2x-4) - 32 = 0
4x(x-6) = 0
x = 6
So a sheet 6x12 will be cut to a box
2x2x8 with volume = 32
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.