Asked by Jessica
Calculate the integrals by partial fractions and using the indicated substitution. Show the results you get are the same.
dx/1-x^2; substitution x= sin pheta
I understand how to do the partial fraction part, but not the second part and I don't know how they are similar. Any help would be appreciated on what to do
dx/1-x^2; substitution x= sin pheta
I understand how to do the partial fraction part, but not the second part and I don't know how they are similar. Any help would be appreciated on what to do
Answers
Answered by
drwls
They want you to do it two ways. The first is to change it to
dx/[2(1+x)] + dx/[2(1-x)]
which integrates to
(1/2)[ln(1+x) - ln(1-x)]
= (1/2)ln[(1+x)/(1-x)]
In the substitution method, with x = sin u
dx = cos u du
Integral dx/(1-x^2)= cos u du/1-sin^2u
= Integral du/cos u = Integral (sec u)
= (1/2)log[(1+sinu)/(1-sinu)]
= (1/2)log[(1+x)/(1-x)]
dx/[2(1+x)] + dx/[2(1-x)]
which integrates to
(1/2)[ln(1+x) - ln(1-x)]
= (1/2)ln[(1+x)/(1-x)]
In the substitution method, with x = sin u
dx = cos u du
Integral dx/(1-x^2)= cos u du/1-sin^2u
= Integral du/cos u = Integral (sec u)
= (1/2)log[(1+sinu)/(1-sinu)]
= (1/2)log[(1+x)/(1-x)]
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.