Asked by Nate
An outfielder throws a baseball with an initial speed of 30 m/s at an angle of 13° to the horizontal. The ball leaves his hand from a height of 1.75 m. How long is the ball in the air before it hits the ground?
Answers
Answered by
Elena
Upward motion:
v(y) = v(oy)- g•t1.
At the highest point v(y) = 0,
t1 =v(oy)/g = v(o) •sinα/g =
=30•sin 13º/9.8 = 0.69 s.
hₒ = v(oy) •t1- g•t1²/2= v(o)•sinα•t1 - g•t1²/2=
=30•sin 13º•0.69 – 9.8•(0.69)²/2 = 4.66-2.33 =2.33 m.
H = h + hₒ =1.75 +2.33 = 4.08 m.
v(x) = v(ox) = v(o) •cosα = 30•cos13º = 29.23 m/s.
Downward motion:
The time of downward motion is determined by the time of vertical motion from the height H:
H=g•t2²/2,
t2 =sqrt(2•H/g) =
=sqrt(2•4.08/9.8) =0.91 s.
t =t1+t2 = 0.69 +0.91 = 1.6 s.
v(y) = v(oy)- g•t1.
At the highest point v(y) = 0,
t1 =v(oy)/g = v(o) •sinα/g =
=30•sin 13º/9.8 = 0.69 s.
hₒ = v(oy) •t1- g•t1²/2= v(o)•sinα•t1 - g•t1²/2=
=30•sin 13º•0.69 – 9.8•(0.69)²/2 = 4.66-2.33 =2.33 m.
H = h + hₒ =1.75 +2.33 = 4.08 m.
v(x) = v(ox) = v(o) •cosα = 30•cos13º = 29.23 m/s.
Downward motion:
The time of downward motion is determined by the time of vertical motion from the height H:
H=g•t2²/2,
t2 =sqrt(2•H/g) =
=sqrt(2•4.08/9.8) =0.91 s.
t =t1+t2 = 0.69 +0.91 = 1.6 s.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.