Asked by Anonymous
A particle of mass m = 3.04kg is suspended from a fixed point by a light inextensible string of length = 1.11m. You are required to determine the relationship between the period of swing and the length of the pendulum. For small angle approximation, sin ¦È ¡Ö ¦È.
Calculate the period of the swing of this simple pendulum, in seconds. You may use g = 9.81ms-2 and ¦Ð = 3.142.
Calculate the period of the swing of this simple pendulum, in seconds. You may use g = 9.81ms-2 and ¦Ð = 3.142.
Answers
Answered by
Elena
Newton’s 2 law for rotation:
I•ε = M.
where I =mL^2 is the moment of inertia of material point.
m•L^2•(d2φ/dt2) = -m•g•L•sin φ.
d2φ/dt2 is the derivative of order two,
sin φ ≈φ,
d2φ/dt2 + (g/L) φ = 0.
The solution of this equation is
φ = φ(max) •cos(ω•t+α),
where ω = sqrt(g/L)
T =2π/ ω =2π•sqrt(l/g).
T = 2π•sqrt(1.11/9.81) = 2.114 s.
I•ε = M.
where I =mL^2 is the moment of inertia of material point.
m•L^2•(d2φ/dt2) = -m•g•L•sin φ.
d2φ/dt2 is the derivative of order two,
sin φ ≈φ,
d2φ/dt2 + (g/L) φ = 0.
The solution of this equation is
φ = φ(max) •cos(ω•t+α),
where ω = sqrt(g/L)
T =2π/ ω =2π•sqrt(l/g).
T = 2π•sqrt(1.11/9.81) = 2.114 s.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.