Asked by LISA
i don't understand this problem
Let F(x)=f(x^4) and G(x)=(f(x))^4. You also know that a^3=2, f'(a)=13, f'(a^4)=15. Find F'(a) and G'(a).
Let F(x)=f(x^4) and G(x)=(f(x))^4. You also know that a^3=2, f'(a)=13, f'(a^4)=15. Find F'(a) and G'(a).
Answers
Answered by
MathMate
F(x)=f(x^4)
Using the chain rule,
F'(x)=f'(x^4)*(d(x^4)/dx)=f'(x^4)*3x^3
substitute x for a and all the numerical values supplied to find F'(a).
Similarly, G(x)=(f(x))^4
Apply the chain rule successively,
G'(x)=(d/dx)(f(x))^4)
=4f(x)^3*f'(x)
So G'(a)=4f(a)^3*f'(a)
Although f'(a) is known, it is not clear to me how we can find f(a).
Using the chain rule,
F'(x)=f'(x^4)*(d(x^4)/dx)=f'(x^4)*3x^3
substitute x for a and all the numerical values supplied to find F'(a).
Similarly, G(x)=(f(x))^4
Apply the chain rule successively,
G'(x)=(d/dx)(f(x))^4)
=4f(x)^3*f'(x)
So G'(a)=4f(a)^3*f'(a)
Although f'(a) is known, it is not clear to me how we can find f(a).
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.