Asked by Morgan

Find the volume of the solid generated by revolving R about the x-axis where R is the region enclosed by the larger curve y=(e^2x)/3, the smaller curve y=1 and the line x=ln(3)

Answers

Answered by Reiny
intersection of y = (1/3)e^(2x) and y = 1
e^2x = 3
2x = ln3
x = (1/2)ln 3
so let's take the volume of the whole region below (1/3)e^(2x) from x = (1/2)ln3 to ln3 and subtract the small cylinder

Vol = π∫y^2 dx - inside small cylinder
= π∫(1/9)e^(4x) dx - i.s.c.
=π[(1/36)e^(4x) from (1/2)ln3 to ln3 - i.s.c.
= π[( (1/9)(81) - (1/9)(9) ) - i.s.c.
= π(9-1) - i.s.c.
= 8π - inside small cylinder

the inside small cylinder has a radius of 1 (from y=1) and a height of ln3 - (1/2)ln3 = (1/2)ln3
its volume is π(1^2)(1/2)ln3
= πln3 /2

whole volume = 8π - (1/2)(π)(ln3) or appr 23.4

I am pretty sure of my method, but you better check my arithmetic and calculations.
Answered by Morgan
Could you show how to do this problem using integrals?
There are no AI answers yet. The ability to request AI answers is coming soon!

Related Questions