Asked by Cindy
The endpoints of are A(9, 4) and B(5, –4). The endpoints of its image after a dilation are A'(6, 3) and B'(3, –3). can you please Explain how to find the scale factor.
Answers
Answered by
Steve
I had to puzzle this out myself. In this case, we need to
(a) find the center of dilation
(b) verify that the dilation of A to A' is the same as that of B to B'
Since dilation is a linear scaling, both A and B are moving toward some point C. Naturally, if the dilation were 0, both points would contract to the same point: the intersection of the lines AA' and BB'
The line containing A and A' is (y-3)/(x-6) = 1/3
The line containing B and B' is (y+3)/(x-3) = -1/2
These lines intersect at (-3,0)
So, now, let's verify that the scale factor is the same along both directions
CA'/CA = √90/√160 = 3/4
CB'/CB = √45/√80 = 3/4
So, the scale factor is 3/4, using (-3,0) as the center of dilation.
(a) find the center of dilation
(b) verify that the dilation of A to A' is the same as that of B to B'
Since dilation is a linear scaling, both A and B are moving toward some point C. Naturally, if the dilation were 0, both points would contract to the same point: the intersection of the lines AA' and BB'
The line containing A and A' is (y-3)/(x-6) = 1/3
The line containing B and B' is (y+3)/(x-3) = -1/2
These lines intersect at (-3,0)
So, now, let's verify that the scale factor is the same along both directions
CA'/CA = √90/√160 = 3/4
CB'/CB = √45/√80 = 3/4
So, the scale factor is 3/4, using (-3,0) as the center of dilation.
Answered by
Reiny
Did you notice that slope AB = slope A'B' = 2 ?
So by extending AA' and BB' until they meet we can find the centre of dilation
Making a neat graph shows that this centre of dilation is C(-3,0)
or
You can find the equation of AA',which was y = (1/3)x + 1, and the equation of BB', which was y = (-1/2)x - 3/2
solving these two to get (-3,0)
AC = √(144+16) = √160 = 4√10
A'C = √(81+9) = √90 = 3√10
A'C/AC = 3V10/(4√10) = <b>3/4</b>
BC = √(64+16) = √80 = 4√5
B'C = √(36+9) = √45 = 3√5
B'C/BC = 3√5/(4√5) = <b>3/4</b>
scale factor is 3/4
So by extending AA' and BB' until they meet we can find the centre of dilation
Making a neat graph shows that this centre of dilation is C(-3,0)
or
You can find the equation of AA',which was y = (1/3)x + 1, and the equation of BB', which was y = (-1/2)x - 3/2
solving these two to get (-3,0)
AC = √(144+16) = √160 = 4√10
A'C = √(81+9) = √90 = 3√10
A'C/AC = 3V10/(4√10) = <b>3/4</b>
BC = √(64+16) = √80 = 4√5
B'C = √(36+9) = √45 = 3√5
B'C/BC = 3√5/(4√5) = <b>3/4</b>
scale factor is 3/4
Answered by
Reiny
Seems like we were on some kind of Vulcan mind-meld.
Even our choice of C for the centre of dilation was the same, spooky!
I had never seen that kind of question, and actually printed myself out a sheet of graph paper, lol
Even our choice of C for the centre of dilation was the same, spooky!
I had never seen that kind of question, and actually printed myself out a sheet of graph paper, lol
Answered by
ty
money baby
Answered by
Lily
Dang! Steve is mega smart! He be answering all of the questions I look up.
Answered by
kendallkouldkareless
Lily, I KNOW. Like kids from 10 years ago are hella smart compared to me lmao whatever I just need help
Answered by
john deere
How did you do this steve?
CA'/CA = √90/√160 = 3/4
CB'/CB = √45/√80 = 3/4
CA'/CA = √90/√160 = 3/4
CB'/CB = √45/√80 = 3/4
Answered by
john deere
How did you get this part Reiny?
AC = √(144+16) = √160 = 4√10
A'C = √(81+9) = √90 = 3√10
A'C/AC = 3V10/(4√10) = 3/4
BC = √(64+16) = √80 = 4√5
B'C = √(36+9) = √45 = 3√5
B'C/BC = 3√5/(4√5) = 3/4
AC = √(144+16) = √160 = 4√10
A'C = √(81+9) = √90 = 3√10
A'C/AC = 3V10/(4√10) = 3/4
BC = √(64+16) = √80 = 4√5
B'C = √(36+9) = √45 = 3√5
B'C/BC = 3√5/(4√5) = 3/4
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.