Asked by Hannah
A satellite moves in a stable circular orbit with speed Vo at a distance R from the center of a planet. For this satellite to move in a stable circular orbit a distance 2R from the center of the planet, the speed of the satellite must be??
I said that F=ma, but m doesn't matter since it's constant. So, a0=a1. a=v^2/r. So V1^2/2R = V0^2/R. I ended up with V1 = V0sqrt(2). But that's not the answer. All the multiple choice answers have sqrt's, 2's, and V0's scattered around, but none are what I have. What did I do wrong??
I said that F=ma, but m doesn't matter since it's constant. So, a0=a1. a=v^2/r. So V1^2/2R = V0^2/R. I ended up with V1 = V0sqrt(2). But that's not the answer. All the multiple choice answers have sqrt's, 2's, and V0's scattered around, but none are what I have. What did I do wrong??
Answers
Answered by
bobpursley
Keplers third law is a neat way to start
r^3=k T^2
but T= 2PR/V so
r^3=K1 (1/v)^2 where k1 is a constant.
So
V^2*r^3= K1
Vo^2*R^3=K1
so if you double r, that must decrease Vo by sqrt (1/8)= 1/(2sqrt2)
check my thinking.
r^3=k T^2
but T= 2PR/V so
r^3=K1 (1/v)^2 where k1 is a constant.
So
V^2*r^3= K1
Vo^2*R^3=K1
so if you double r, that must decrease Vo by sqrt (1/8)= 1/(2sqrt2)
check my thinking.
Answered by
tchrwill
R = orbit radius
µ = gravitatinal constant of body = GM
Circular velocity at R = Vo = sqrt(µ/R)
Circular velocity at 2R = V1 = sqrt(µ/2R)
V1/Vo = sqrt(µ/2R)/sqrt(µ/R)
V1^2/Vo^2 = (µ/2R)/(µ/R) = R/2R = 1/2
V1/Vo = sqrt(1/2)
V1 = Vosqrt(1/2)
V1 = Vo(1/1.41421) = .7071Vo
µ = gravitatinal constant of body = GM
Circular velocity at R = Vo = sqrt(µ/R)
Circular velocity at 2R = V1 = sqrt(µ/2R)
V1/Vo = sqrt(µ/2R)/sqrt(µ/R)
V1^2/Vo^2 = (µ/2R)/(µ/R) = R/2R = 1/2
V1/Vo = sqrt(1/2)
V1 = Vosqrt(1/2)
V1 = Vo(1/1.41421) = .7071Vo
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.