Asked by jason
What number must be added to each of the numbers 0, 8, and 32 so that they form consecutive terms of a geometric sequence?
I don't understand what the question is asking first of all.
The answer is 4.
Help is much appreciated.
I don't understand what the question is asking first of all.
The answer is 4.
Help is much appreciated.
Answers
Answered by
Ms. Sue
"A geometric sequence goes from one term to the next by always multiplying (or dividing) by the same value. So 1, 2, 4, 8, 16,... and 81, 27, 9, 3, 1, 1/3,... are geometric, since you multiply by 2 and divide by 3, respectively, at each step."
-- http://www.purplemath.com/modules/series3.htm
-- http://www.purplemath.com/modules/series3.htm
Answered by
Steve
A geometric sequence cannot start with 0, or all the terms will just stay 0.
So, you want n such that each term is a constant multiple of the one before.
(8+n)/(0+n) = (32+n)/(8+n)
(8+n)^2 = n(32+n)
64 + 16n + n^2 = 32n + n^2
64 = 16n
n=4
So, the sequence starts out 4,12,36,... with each term 3x the previous one.
So, you want n such that each term is a constant multiple of the one before.
(8+n)/(0+n) = (32+n)/(8+n)
(8+n)^2 = n(32+n)
64 + 16n + n^2 = 32n + n^2
64 = 16n
n=4
So, the sequence starts out 4,12,36,... with each term 3x the previous one.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.