Asked by Jay
(3,5) is a point on the graph of y = f(x). Find the corresponding point on the graph of each of the following relations
a) y=3f(-x + 1) + 2
what do I do with the negative sign before the x (-x)?
a) y=3f(-x + 1) + 2
what do I do with the negative sign before the x (-x)?
Answers
Answered by
Steve
well, we know that f(3) = 5
That means that if 5 = 3f(-x+1) + 2
then f(-x+1) = 1
Hmmm. If x = -2 then we have
y = 3f(3)+2 = 3(5)+2 = 17
Is there more to this problem than you have stated? Is the graph a line, parabola, what?
We do know that 3f(-x+1)+2 is f(x) reflected about the line x=1, scaled by a factor of 3 and shifted up by 2.
That means that if 5 = 3f(-x+1) + 2
then f(-x+1) = 1
Hmmm. If x = -2 then we have
y = 3f(3)+2 = 3(5)+2 = 17
Is there more to this problem than you have stated? Is the graph a line, parabola, what?
We do know that 3f(-x+1)+2 is f(x) reflected about the line x=1, scaled by a factor of 3 and shifted up by 2.
Answered by
Jay
Thanks and no, it doesn't state whether or not its a parabola, etc.
f(3) = 5?
isn't x=3 and y=5?
also, how is f(-x+1) = 1 :S did you factor out the negative?
f(3) = 5?
isn't x=3 and y=5?
also, how is f(-x+1) = 1 :S did you factor out the negative?
Answered by
Steve
Hmm. good question. I guess I was rambling around ideas, and lost track of what was what.
I think my only relevant comment is about the reflection, scaling, and translation, and even it was a bit off.
If y=f(x)
y = f(x-1) is the same graph shifted one unit to the right.
f(1-x) is that graph reflected about the line x=1
3f(1-x) is the translated, reflected graph scaled by a factor of 3
3f(1-x)+2 is the translated, reflected, scaled graph, shifted up 3 units.
If we call this new function g(x) = 3f(1-x)+2, then we can't evaluate g(3) becauise that is 3f(-2)+2 and we don't know what f(-2) is.
So, are we supposed to find g(-2)? That would be 3f(3)+2 = 17, so I guess you could say that (-2,17) is a "corresponding point".
Are we supposed to find x so that g(x) = 5? If so, that means that 3f(1-x)+2 = 5 and so 3f(1-x) = 3 and so f(1-x) = 1
But we have no idea where f(x) = 1.
I think hyou need to take a look at your course materials to see what they are trying to get at with this problem.
I think my only relevant comment is about the reflection, scaling, and translation, and even it was a bit off.
If y=f(x)
y = f(x-1) is the same graph shifted one unit to the right.
f(1-x) is that graph reflected about the line x=1
3f(1-x) is the translated, reflected graph scaled by a factor of 3
3f(1-x)+2 is the translated, reflected, scaled graph, shifted up 3 units.
If we call this new function g(x) = 3f(1-x)+2, then we can't evaluate g(3) becauise that is 3f(-2)+2 and we don't know what f(-2) is.
So, are we supposed to find g(-2)? That would be 3f(3)+2 = 17, so I guess you could say that (-2,17) is a "corresponding point".
Are we supposed to find x so that g(x) = 5? If so, that means that 3f(1-x)+2 = 5 and so 3f(1-x) = 3 and so f(1-x) = 1
But we have no idea where f(x) = 1.
I think hyou need to take a look at your course materials to see what they are trying to get at with this problem.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.