Asked by Yoona
let f be the function defined by f(x)=3X^5 -5X^3 +2
a) on what interval is f increasing? b) on what interval is the graph of f concave upward?
c)Write the equation of each horizontal line tangent to the graph of f
a) on what interval is f increasing? b) on what interval is the graph of f concave upward?
c)Write the equation of each horizontal line tangent to the graph of f
Answers
Answered by
Steve
f is increasing when f' is positive
f' = 15x^4 - 15x^2 = 15x^2 (x^2-1)
So, f' > 0 when |x| > 1
f is concave upward when f'' is positive
f'' = 60x^3 - 30x = 30x(2x-1)
So, f'' > 0 when x < 0 or x > 1/2
Horizontal lines have slope=0. So, we want places where f'(x) = 0
15x^2 (x^2 - 1) = 0
x = -1, 0, 1
The horizontal lines are
y=f(-1)
y=f(0)
y=f(1)
evaluate f(x) at those points to get your lines.
f' = 15x^4 - 15x^2 = 15x^2 (x^2-1)
So, f' > 0 when |x| > 1
f is concave upward when f'' is positive
f'' = 60x^3 - 30x = 30x(2x-1)
So, f'' > 0 when x < 0 or x > 1/2
Horizontal lines have slope=0. So, we want places where f'(x) = 0
15x^2 (x^2 - 1) = 0
x = -1, 0, 1
The horizontal lines are
y=f(-1)
y=f(0)
y=f(1)
evaluate f(x) at those points to get your lines.
Answered by
Steve
Oops. f'' = 30x(2x^2 - 1)
so -1/√2 < x < 0 or x > 1/√2
so -1/√2 < x < 0 or x > 1/√2
Answered by
drwls
a) That would be where the derivative
f'(x) = 15x^4 -15x^2 > 0
x^2*(x^2-1) >0
Since x^2 must be positive or zero,
(x+1)(x-1) > 0
x > 1 or x<-1
b) That would be where f"(x) > 0
c) Horizontal tangents would be where f'(x) = 0.
Find those x and y values.
f'(x) = 15x^4 -15x^2 > 0
x^2*(x^2-1) >0
Since x^2 must be positive or zero,
(x+1)(x-1) > 0
x > 1 or x<-1
b) That would be where f"(x) > 0
c) Horizontal tangents would be where f'(x) = 0.
Find those x and y values.
Answered by
Sarah
So is the answer y=0, y=2, and y=4?
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.