Asked by Jim
With y=f(x) (2x-10)^1/2
having a virtual line joined at point Q from the origin (0,0), determine the coordinates of point Q that maximises the angle of vision of an observer, situated at the origin, following the movement of point Q along the curve.
Note that tan (theta symbol) = y/x
Will I just have to find both derivatives and from there find the zero for the maximum?
having a virtual line joined at point Q from the origin (0,0), determine the coordinates of point Q that maximises the angle of vision of an observer, situated at the origin, following the movement of point Q along the curve.
Note that tan (theta symbol) = y/x
Will I just have to find both derivatives and from there find the zero for the maximum?
Answers
Answered by
Reiny
Did you make a sketch of y = (2x-10)^(1/2) ?
Let Q be any point on the curve
then Q can be labelled (x, (2x-10^1/2 )
Join OQ
slope of oQ = (2x-10)^1/2 / x
let the angle made by OQ with the x-axis be Ø
then
tanØ = y/x = (2x-10)^1/2 / x
sec^2 Ø dØ/dx = (x(1/2)(2x-10)^(-1/2)(2) - (2x-10)^(1/2) (1) )/x^2 using the quotient rule
for a max of Ø , dØ/dx = 0
so (x(1/2)(2x-10)^(-1/2)(2) - (2x-10)^(1/2) (1) )/x^2 = 0
(x(1/2)(2x-10)^(-1/2)(2) - (2x-10)^(1/2) (1) ) = 0 , we can ignore the denominator.
x/(2x-10)^(-1/2) - (2x-10)^1/2 = 0
x/(2x-10)^1/2 = (2x-10)^1/2
x = 2x-10 , after cross-multiplying
x = 10
so Q is (10, 10^1/2) or (10, √10)
check:
at x=10, tanØ = √10/10 = .31622 , Ø = 17.548°
at x = 10.1 , tanØ = √10.2/10.1 = .3162 Ø = 17.547 ° -- a bit smaller
at x = 9.9 , tanØ = √9.8/9.9 = .3162116, Ø = 17.547 -- again a bit smaller than at x=10
my answer looks good!
Let Q be any point on the curve
then Q can be labelled (x, (2x-10^1/2 )
Join OQ
slope of oQ = (2x-10)^1/2 / x
let the angle made by OQ with the x-axis be Ø
then
tanØ = y/x = (2x-10)^1/2 / x
sec^2 Ø dØ/dx = (x(1/2)(2x-10)^(-1/2)(2) - (2x-10)^(1/2) (1) )/x^2 using the quotient rule
for a max of Ø , dØ/dx = 0
so (x(1/2)(2x-10)^(-1/2)(2) - (2x-10)^(1/2) (1) )/x^2 = 0
(x(1/2)(2x-10)^(-1/2)(2) - (2x-10)^(1/2) (1) ) = 0 , we can ignore the denominator.
x/(2x-10)^(-1/2) - (2x-10)^1/2 = 0
x/(2x-10)^1/2 = (2x-10)^1/2
x = 2x-10 , after cross-multiplying
x = 10
so Q is (10, 10^1/2) or (10, √10)
check:
at x=10, tanØ = √10/10 = .31622 , Ø = 17.548°
at x = 10.1 , tanØ = √10.2/10.1 = .3162 Ø = 17.547 ° -- a bit smaller
at x = 9.9 , tanØ = √9.8/9.9 = .3162116, Ø = 17.547 -- again a bit smaller than at x=10
my answer looks good!
Answered by
Jim
thank you very much, I understand my mistake!
Answered by
Steve
So, we want to maximize
t = arctan(sqrt(2x-10)/x)
t' = -(x-10)/[(sqrt(2x-10)/x)^2 + 1)*x^2 * sqrt(2x-10)]
All that junk in the bottom is never zero when x>5, so we just have to find where x-10 = 0
well, duh: x=10
So, Q = (10,√10)
t = arctan(sqrt(2x-10)/x)
t' = -(x-10)/[(sqrt(2x-10)/x)^2 + 1)*x^2 * sqrt(2x-10)]
All that junk in the bottom is never zero when x>5, so we just have to find where x-10 = 0
well, duh: x=10
So, Q = (10,√10)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.