Asked by zoe
                find the centroid of the plane region bounded by the curves y = cos x, y=sinx, x=0,
            
            
        Answers
                    Answered by
            Steve
            
    Double check my math, because it gets messy...
Break it into two intervals: [0,pi/4] and [pi/4,pi/2]
Int(sin x)[0,pi/4] + Int(cos x)[pi/4,pi/2]
= (-cos x)[0,pi/4] + (sin x)[pi/4,pi/2]
= 2-√2
This is the denominator in the formulas for xbar and ybar: D = 2-√2
Now for the numerators:
xbarn = Int(x sin x)[0,pi/4] + Int(x cos x)[pi/4,pi/2]
Recall that using integration by parts,
Int(x sin x) = -x cos x + sin x)
Int(x cos x) = x sin x + cos x)
If my math is right, xbarn = pi/4 * (2-√2)
So, xbar = xbarn/D = pi/4
Makes sense, since the area is symmetric about the line x = pi/4.
Now for ybar
ybarn = 1/2 Int(sin^2 x)[0,pi/4] + 1/2 Int(cos^2 x)[pi/4,pi/2]
Recall that
sin^2 x = (1 - cos(2x))/2
cos^2 x = (1 + cos(2x))/2
ybarn = 1/4 Int(1 - cos 2x)[0,pi/4] + 1/4 Int(1 + cos 2x)[pi/4,pi/2]
= 1/4 (x - 1/2 sin 2x)[0,pi/4] + 1/4 (x + 1/2 sin 2x)[pi/4,pi/2]
= 1/8 (pi-2)
So, ybar = ybarn/D = (pi-2)/(8*(2-√2))
    
Break it into two intervals: [0,pi/4] and [pi/4,pi/2]
Int(sin x)[0,pi/4] + Int(cos x)[pi/4,pi/2]
= (-cos x)[0,pi/4] + (sin x)[pi/4,pi/2]
= 2-√2
This is the denominator in the formulas for xbar and ybar: D = 2-√2
Now for the numerators:
xbarn = Int(x sin x)[0,pi/4] + Int(x cos x)[pi/4,pi/2]
Recall that using integration by parts,
Int(x sin x) = -x cos x + sin x)
Int(x cos x) = x sin x + cos x)
If my math is right, xbarn = pi/4 * (2-√2)
So, xbar = xbarn/D = pi/4
Makes sense, since the area is symmetric about the line x = pi/4.
Now for ybar
ybarn = 1/2 Int(sin^2 x)[0,pi/4] + 1/2 Int(cos^2 x)[pi/4,pi/2]
Recall that
sin^2 x = (1 - cos(2x))/2
cos^2 x = (1 + cos(2x))/2
ybarn = 1/4 Int(1 - cos 2x)[0,pi/4] + 1/4 Int(1 + cos 2x)[pi/4,pi/2]
= 1/4 (x - 1/2 sin 2x)[0,pi/4] + 1/4 (x + 1/2 sin 2x)[pi/4,pi/2]
= 1/8 (pi-2)
So, ybar = ybarn/D = (pi-2)/(8*(2-√2))
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.