Asked by Mishaka
                Two particles are moving in straight lines. The displacement (in meters) of particle 1 is given by the function e^(4cos(t)) , where t is in seconds. The displacement (in meters) of particle 2 is given by the function -(t^3)/(3) - (t^2)/(2) + 2 , where t is in seconds. Find the first positive time at which the particles have(approximately) the same velocity.
A.) t = 1.569 seconds
B.) t = 0 seconds
C.) t = 2.366 seconds
D.) t = 0.588 seconds
E.) t = 1.011 seconds
            
        A.) t = 1.569 seconds
B.) t = 0 seconds
C.) t = 2.366 seconds
D.) t = 0.588 seconds
E.) t = 1.011 seconds
Answers
                    Answered by
            Damon
            
    v1 = -4 sint e^4cost
v2 = -t^2 - t
so when does 4 sin t e^4 cos t = t^2+t ??
try approximately those answers to see when v1=v2
A 3.96 and 4.16
B 4 and 0 no
C the rest look pretty far off
try A accurately
4.0288 and 4.0307
It is A
    
v2 = -t^2 - t
so when does 4 sin t e^4 cos t = t^2+t ??
try approximately those answers to see when v1=v2
A 3.96 and 4.16
B 4 and 0 no
C the rest look pretty far off
try A accurately
4.0288 and 4.0307
It is A
                    Answered by
            mathssssss
            
    Yes the answer is t=1.569 
the first positive time which the two particles have the same velocity is at 1.569 seconds. checck this with nderv on your cal. easier to find the difference to find where its derivative is 0.
    
the first positive time which the two particles have the same velocity is at 1.569 seconds. checck this with nderv on your cal. easier to find the difference to find where its derivative is 0.
                                                    There are no AI answers yet. The ability to request AI answers is coming soon!
                                            
                Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.