Ask a New Question

Asked by Erica

How do you solve the integral from 0 to 1 of x arctan x dx?
13 years ago

Answers

Answered by drwls
The indefinite integral is
(1/2)[(x^2+1)arctanx -x]
Evaluate it at x=1 and subtract the value at x=0

Definite integral = (1/2)[2*(pi/4) -1]
- (1/2)[0 - 0]
= (pi/4) - (1/2)

I used a table of integrals. It looks like a function that requires "integration by parts" .
13 years ago

Related Questions

How can I solve the integral of x^3√(9-x^2) dx using trigonometric substitution? ? ∫ x^3√(9-x^2) dx... Solve the integral: S (e^-cosx)(x^2)dx Solve the integral ∫csc(z+π/6)cot(z+π/6)dz Solve the integral of (x*e^2x)/(1+2x)^2 by first using u substitution and then use integration by p... Solve the integral from [0,pi] of x*sinx*cosx*dx I don't understand how to solve this problem b... Solve the integral (x+3)/(x-1)^3 So far, I'm stuck. This is what I have thus far: x+3 = A(x-1)... Solve the integral: (1-x^2)^(3/2)/x^2 This is what I have so far. I used trig substitution. x=si... Solve the integral: 5/x(x^2-4) dx I've done the partial fractions and found B and C, both equalin... How to solve an integral Solve the following integral and find the equation of motion. S'do (1) dt = S'a dz
Ask a New Question
Archives Contact Us Privacy Policy Terms of Use