Asked by kait
a builder intends to construct a storage shed having a volume of 900ft^3, a flat roof and a rectangular base whose width is three-fourths the length. the cost per square foot of the materials is 4000.00 for the floor,6000.00 for the sides and 3000.00 for the roof. what dimension will minimize the cost?
Answers
Answered by
Reiny
I like to avoid fractions if possible, so let the
width be 3x
and the length be 4x , (notice that 3x/4x) = 3/4)
let the height be h
V= (3x)(4x)(h)
h = 900/(12x^2) = 75/x^2
Cost = C = 4000(top) + 6000(sides) + 3000(roof)
= 4000(12x^2) + 6000(8xh+6xh) + 3000(12x^2)
= 84000x^2 + 84000xh
= 84000x^2 + 84000x(75/x^2
= 84000x^2 + 84000(75)/x
= 84000(x^2 + 75/x)
d(Cost)/dx = 84000(2x - 75/x^2) = 0 for a min of C
2x = 75/x^2
x^3 = 75/2 = 37.5
x = (37.5)^(1/3) = 3.347
width = 3(3.347) = 10.04
length = 4(3.347) = 13.39
height = 75/(3.347)^2 = 6.69 (all in feet)
width be 3x
and the length be 4x , (notice that 3x/4x) = 3/4)
let the height be h
V= (3x)(4x)(h)
h = 900/(12x^2) = 75/x^2
Cost = C = 4000(top) + 6000(sides) + 3000(roof)
= 4000(12x^2) + 6000(8xh+6xh) + 3000(12x^2)
= 84000x^2 + 84000xh
= 84000x^2 + 84000x(75/x^2
= 84000x^2 + 84000(75)/x
= 84000(x^2 + 75/x)
d(Cost)/dx = 84000(2x - 75/x^2) = 0 for a min of C
2x = 75/x^2
x^3 = 75/2 = 37.5
x = (37.5)^(1/3) = 3.347
width = 3(3.347) = 10.04
length = 4(3.347) = 13.39
height = 75/(3.347)^2 = 6.69 (all in feet)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.