Asked by Jackie
how do you solve limit approaching 0 of (sin^2x) / (x)
Answers
Answered by
bobpursley
wouldn't it be the same as Lim sinx * lim sinx/x=0*1=0?
lim ab= lim a * lim b in my part of the woods.
lim ab= lim a * lim b in my part of the woods.
Answered by
johnathon
the limit of ab does not always = the limit of a * limit b
use lpatls rule i am probboly spelling that wrong but it says that the limit at x approches a of f/g = the limit as x approches a of f'/g' this is only true if the function is of the indeterminate for 0/0 or infinity/infinity
you have 0/0 that is lim of sin(2x) as x approches 0 is 0 and the lim of x as x approches 0 is 0
f=sin(2x) g=x f'=cos(2x)*2 g'=1
the lim as x approches 0 of sin(2x)/(x)=
the lim as x approches 0 of cos(2x)
cos(0)=1
use lpatls rule i am probboly spelling that wrong but it says that the limit at x approches a of f/g = the limit as x approches a of f'/g' this is only true if the function is of the indeterminate for 0/0 or infinity/infinity
you have 0/0 that is lim of sin(2x) as x approches 0 is 0 and the lim of x as x approches 0 is 0
f=sin(2x) g=x f'=cos(2x)*2 g'=1
the lim as x approches 0 of sin(2x)/(x)=
the lim as x approches 0 of cos(2x)
cos(0)=1
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.