Asked by carl
Does the function y = 2^x ever cross the x-axis? Explain why or why not
Answers
Answered by
Henry
The point where the function crosses the x-axis is call the x-intercept or
solution. Y equals zero at the point where the graph croses the x-axis. If
Y never goes to zero, the function does not cross or touch the x-axis.
It can be proven that the graph of the
given Eq does not cross or touch the x-axis for any real value of x:
Let x = 0,
Y = 2^x = 2^0 = 1.
So when x is positive, the minimum value of Y is 1.
Let x = -10.
Y = 2^-10 = 1/2^10 = 0.0009766.
The value of y approaches zero as a
limit, but can never reach zero unless
the numerator equals zero. But the numerator = 1.
Let y = 0.
y = 2^x = 0,
Take log of both sides:
xlog2 = log(0),
X = log(0)/log2,
But the log of 0 is undefined. Therefore, there is no real value of
x that will give a y of 0.
solution. Y equals zero at the point where the graph croses the x-axis. If
Y never goes to zero, the function does not cross or touch the x-axis.
It can be proven that the graph of the
given Eq does not cross or touch the x-axis for any real value of x:
Let x = 0,
Y = 2^x = 2^0 = 1.
So when x is positive, the minimum value of Y is 1.
Let x = -10.
Y = 2^-10 = 1/2^10 = 0.0009766.
The value of y approaches zero as a
limit, but can never reach zero unless
the numerator equals zero. But the numerator = 1.
Let y = 0.
y = 2^x = 0,
Take log of both sides:
xlog2 = log(0),
X = log(0)/log2,
But the log of 0 is undefined. Therefore, there is no real value of
x that will give a y of 0.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.