Asked by rohan
if a+2b+c=4 then find the maximum value of ab+bc+ca
Answers
Answered by
MathMate
Intuitively, we can locate the maximum by the following reasoning:
Given
a+2b+c=4.....(1)
as a constraint, we look for the maximum of
f(a,b,c)=ab+bc+ca...(2)
First solve for b in terms of a and b from 1 to get:
b=(4-a-c)/2
Substitute in (2) to get
(4c+4a-a²-c²)/2
which is perfectly symmetrical in a and c.
So set a and c each equal to x and find the maximum of
f(x)=8x-2x²
by setting f'(x)=8-4x=0,
we find the maximum of f(x)=f(2)=4 when a=c=2, and b=0.
Alternately, we can find it formally using the Lagrange multiplier method.
Let the objective function
P(a,b,c)=ab+bc+ca+L(a+2b+c-4)
where L is an undetermined constant, and a+2b+c-4=0 is the given constraint.
Differentiating partially with respect to a, b, and c yields the following set of linear equations:
a+2b+c=4 ....(1) given constraint
b+c+L=0 ....(2) ∂P/∂a=0
a+c+2L=0 ...(3) ∂P/∂b=0
b+a+L=0 ...(4) ∂P/∂c=0
By solving the linear system (1) to (4), we get
a=2,b=0,c=2,L=-2 as before.
Given
a+2b+c=4.....(1)
as a constraint, we look for the maximum of
f(a,b,c)=ab+bc+ca...(2)
First solve for b in terms of a and b from 1 to get:
b=(4-a-c)/2
Substitute in (2) to get
(4c+4a-a²-c²)/2
which is perfectly symmetrical in a and c.
So set a and c each equal to x and find the maximum of
f(x)=8x-2x²
by setting f'(x)=8-4x=0,
we find the maximum of f(x)=f(2)=4 when a=c=2, and b=0.
Alternately, we can find it formally using the Lagrange multiplier method.
Let the objective function
P(a,b,c)=ab+bc+ca+L(a+2b+c-4)
where L is an undetermined constant, and a+2b+c-4=0 is the given constraint.
Differentiating partially with respect to a, b, and c yields the following set of linear equations:
a+2b+c=4 ....(1) given constraint
b+c+L=0 ....(2) ∂P/∂a=0
a+c+2L=0 ...(3) ∂P/∂b=0
b+a+L=0 ...(4) ∂P/∂c=0
By solving the linear system (1) to (4), we get
a=2,b=0,c=2,L=-2 as before.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.