Asked by anandi
Find the minimum value of 9Tan^2x + 4Cot^2x.
Answers
Answered by
Reiny
take the derivative and set that equal to zero
let y = 9tan^2 x + 4cot^2 x
dy/dx = 18tanx(sec^2x) + 8cotx(-csx^2x)
= 0
18(sinx)/(cosx)(1/cos^2x) + 8(cosx/sinx)(-1/sin^2x) = 0
18sinx/cos^3x) - 8cosx/sin^3x = 0
18sinx/cos^3x) = 8cosx/sin^3x
18sin^4x = 8cos^4x
sin^4x/cos^4x = 8/18
tan^4x = 4/9
tanx = ± (4/9)^.25 = ± .8165 appr.
set calculator to radians,
x = .6847 or π-.6847 or π+.6847 or 2π-.6847
sub each of those into original to see which one gives the smaller value
let y = 9tan^2 x + 4cot^2 x
dy/dx = 18tanx(sec^2x) + 8cotx(-csx^2x)
= 0
18(sinx)/(cosx)(1/cos^2x) + 8(cosx/sinx)(-1/sin^2x) = 0
18sinx/cos^3x) - 8cosx/sin^3x = 0
18sinx/cos^3x) = 8cosx/sin^3x
18sin^4x = 8cos^4x
sin^4x/cos^4x = 8/18
tan^4x = 4/9
tanx = ± (4/9)^.25 = ± .8165 appr.
set calculator to radians,
x = .6847 or π-.6847 or π+.6847 or 2π-.6847
sub each of those into original to see which one gives the smaller value
Answered by
Mgraph
Let z=tan^2(x), z>0
F(z)=9z+4/z,
F'(z)=9-4/z^2, F'(z)=0 if z=2/3
minF(z)=F(2/3)=12
(corresponding value of x exists)
F(z)=9z+4/z,
F'(z)=9-4/z^2, F'(z)=0 if z=2/3
minF(z)=F(2/3)=12
(corresponding value of x exists)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.