Duplicate Question
The question on this page has been marked as a duplicate question.
Original Question
A sequence is defined by un = 2×(−0.5)n + 3 (n = 1,2,3, . . .). Choose the option that best describes the long-term behaviour o...Asked by albert
A sequence is defined by
un = 2×(−0.5)n + 3 (n = 1,2,3, . . .).
Choose the option that best describes the long-term behaviour of the
sequence.
Options
A un becomes arbitrarily small (that is, un → 0 as n→∞).
B un becomes arbitrarily large and negative (that is, un →−∞
as n→∞).
C un approaches 3 as n→∞ (that is, un → 3 as n→∞).
D un is unbounded and alternates in sign.
E un becomes arbitrarily large and positive (that is, un→∞
as n→∞).
F un approaches 2 as n→∞ (that is, un → 2 as n→∞
un = 2×(−0.5)n + 3 (n = 1,2,3, . . .).
Choose the option that best describes the long-term behaviour of the
sequence.
Options
A un becomes arbitrarily small (that is, un → 0 as n→∞).
B un becomes arbitrarily large and negative (that is, un →−∞
as n→∞).
C un approaches 3 as n→∞ (that is, un → 3 as n→∞).
D un is unbounded and alternates in sign.
E un becomes arbitrarily large and positive (that is, un→∞
as n→∞).
F un approaches 2 as n→∞ (that is, un → 2 as n→∞
Answers
Answered by
MathMate
Look at the behaviour of the first term:
2*(-0.5)^n (check, this is not what you posted).
We can make the following observations.
As n increases, the sign alternates.
As n->∞ the term approaches zero.
Based on these observations, can you make a choice from the list of possible answers? In the worst case, you should be able to eliminate quite a few choices.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.