Asked by albert
A sequence is defined by
un = 2×(−0.5)n + 3 (n = 1,2,3, . . .).
Choose the option that best describes the long-term behaviour of the
sequence.
Options
A un becomes arbitrarily small (that is, un → 0 as n→∞).
B un becomes arbitrarily large and negative (that is, un →−∞
as n→∞).
C un approaches 3 as n→∞ (that is, un → 3 as n→∞).
D un is unbounded and alternates in sign.
E un becomes arbitrarily large and positive (that is, un→∞
as n→∞).
F un approaches 2 as n→∞ (that is, un → 2 as n→∞).
un = 2×(−0.5)n + 3 (n = 1,2,3, . . .).
Choose the option that best describes the long-term behaviour of the
sequence.
Options
A un becomes arbitrarily small (that is, un → 0 as n→∞).
B un becomes arbitrarily large and negative (that is, un →−∞
as n→∞).
C un approaches 3 as n→∞ (that is, un → 3 as n→∞).
D un is unbounded and alternates in sign.
E un becomes arbitrarily large and positive (that is, un→∞
as n→∞).
F un approaches 2 as n→∞ (that is, un → 2 as n→∞).
Answers
Answered by
MathMate
See repost
http://www.jiskha.com/display.cgi?id=1305228142
http://www.jiskha.com/display.cgi?id=1305228142
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.