Asked by ann
A gift store stocks baseball hats in red or green colors. Of the 35 hats on display on a given day, 20 are green. As well, 18 of the hats have a grasshopper logo on the brim. Suppose 11 of the red hats have logos. How many hats are red, or have logos, or both?
The answer in the book is 22. I do not understand how they got this. Could someone please help me? Thanks.
The answer in the book is 22. I do not understand how they got this. Could someone please help me? Thanks.
Answers
Answered by
MathMate
It is not clear if you have learned the inclusion/exclusion principle. If you have, you can apply it without drawing the Venn diagram.
However, for a two-set problem like this, it is easier to draw a Venn diagram and solve accordingly.
There are three sets in a universal set E where the cardinality (i.e. total number of elements) |E|=35.
We are also given that for the set of green hats G, |G|=20.
We conclude therefore that for the set R, |R|=|E|-|G|=35-20=15.
Of the 35 hats, irrespective of colour, 18 of them have logos, so belong to the set L, where |L|=18.
We are required to find the set of hats which are either red, or has a logo, that is, the cardinality of the set R∪L, or |R∪L|.
Consider now the sets L and R.
Draw a Venn diagram for the two, with an intersection, i.e. both red and have a logo. We understand that |L∩R|=11.
So if you put in the Venn diagram 18 for L, 15 for R, and 11 for R∩L. You can calculate that L-R (i.e. with a logo but not red) is 18-11=7, and R-L (i.e. red but no logo) is 15-11=4.
So therefore
|R∪L| = 7+11+4 = 22.
However, for a two-set problem like this, it is easier to draw a Venn diagram and solve accordingly.
There are three sets in a universal set E where the cardinality (i.e. total number of elements) |E|=35.
We are also given that for the set of green hats G, |G|=20.
We conclude therefore that for the set R, |R|=|E|-|G|=35-20=15.
Of the 35 hats, irrespective of colour, 18 of them have logos, so belong to the set L, where |L|=18.
We are required to find the set of hats which are either red, or has a logo, that is, the cardinality of the set R∪L, or |R∪L|.
Consider now the sets L and R.
Draw a Venn diagram for the two, with an intersection, i.e. both red and have a logo. We understand that |L∩R|=11.
So if you put in the Venn diagram 18 for L, 15 for R, and 11 for R∩L. You can calculate that L-R (i.e. with a logo but not red) is 18-11=7, and R-L (i.e. red but no logo) is 15-11=4.
So therefore
|R∪L| = 7+11+4 = 22.
Answered by
ann
Thanks a lot.
Answered by
MathMate
You're welcome!
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.