Asked by Sarah
Consider the solid obtained by rotating the region bounded by the given curves about the y-axis.
y = ln x, y = 4, y = 5, x = 0
Find the volume V of this solid.
Help!!! Thank you in advance :(
y = ln x, y = 4, y = 5, x = 0
Find the volume V of this solid.
Help!!! Thank you in advance :(
Answers
Answered by
MathMate
This problem can be easily solved using the disk method.
Horizontal disks are used, with slices of thickness dy.
We will integrate from y=4 to y=5.
Each disk has a volume of πr(y)²dy.
where the radius is a function of y.
Since y=ln(x), its inverse relation is x=e^y.
Integrate for y=4 to 5 of
V=∫π(e^y)²dy
=π∫e^(2y)dy
=π(1/2)e^(2y)
Evaluate between 4 and 5 gives
V=(π/2)(e^(2*5)-e^(2*4))
=29917 (approx.)
Check:
The average radius is between e^4 and e^5=101.5
Volume = 32400 approx. > 29917
Since the curve ln(x) is concave up, the actual volume should be a little less than the approximation. So the calculated volume should be correct.
Horizontal disks are used, with slices of thickness dy.
We will integrate from y=4 to y=5.
Each disk has a volume of πr(y)²dy.
where the radius is a function of y.
Since y=ln(x), its inverse relation is x=e^y.
Integrate for y=4 to 5 of
V=∫π(e^y)²dy
=π∫e^(2y)dy
=π(1/2)e^(2y)
Evaluate between 4 and 5 gives
V=(π/2)(e^(2*5)-e^(2*4))
=29917 (approx.)
Check:
The average radius is between e^4 and e^5=101.5
Volume = 32400 approx. > 29917
Since the curve ln(x) is concave up, the actual volume should be a little less than the approximation. So the calculated volume should be correct.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.