Asked by Max
You have exactly 100 dollars to buy 100 animals you must buy at least one of each of the following animals Chickens=50 cents each Pigs=3.00 each Cows=10.00 each
Answers
Answered by
Reiny
Don't you just love these 19th Century textbooks?
A pig for $3 !!!!! WOW
let number of cows be x
let the number of pigs be y
then the number of chickens = 100-x-y
10x + 3y + .5(100-x-y) < 100
times 2
20x + 6y + 100 - x - y < 200
19x + 5y < 100
consider 19x + 5y = 100
But , what is the question?
Do you want the different combinations you can buy? Do we want as close as possible to $100?
Remember x and y have to be positive integers.
so x has to be between 1 and 5
form a table with columns
x, y, and 100-x-y, and cost
1 16 83 99.50
1 15 82 86.00
...
5 1 94 100
x=5, y=1 is the only combination that will use all the money
He should buy 5 cows, 1 pig and 94 chickens
5+1+94 = 100
$50 + $3 + $47 = $100
A pig for $3 !!!!! WOW
let number of cows be x
let the number of pigs be y
then the number of chickens = 100-x-y
10x + 3y + .5(100-x-y) < 100
times 2
20x + 6y + 100 - x - y < 200
19x + 5y < 100
consider 19x + 5y = 100
But , what is the question?
Do you want the different combinations you can buy? Do we want as close as possible to $100?
Remember x and y have to be positive integers.
so x has to be between 1 and 5
form a table with columns
x, y, and 100-x-y, and cost
1 16 83 99.50
1 15 82 86.00
...
5 1 94 100
x=5, y=1 is the only combination that will use all the money
He should buy 5 cows, 1 pig and 94 chickens
5+1+94 = 100
$50 + $3 + $47 = $100
Answered by
tchrwill
A Golden Oldie
If you had a $100.00 to spend and need to buy a 100 animals, and cows cost
$10.00, pigs $3.00, chickens .50 cents each,how many of each can you buy?
Let C, P, and F be the numbers of cows, pigs, and fowl.
1--C + P + F = 100
2--10C + 3P + .5F = 100 or 100C + 30P + 5F = 1000
3--Multiplying (1) by 5 and subtracting from (2) yields 19C + 5P = 100
4--Dividing through by 5 gives P + 3C + 4C/5 = 20
5--4C/5 must be an integer as must be C/5
6--Let C/5 = k making C = 5k
7--Substituting (6) back into (3) gives 95k + 5P = 100 making P = 20 - 19k
8--k can only be 1 making C = 5, P = 1, and F = 94
Check: 10(5) + 3(1) + .5(94) = $100
Alternatively
Let C, P, and F be the numbers of cows, pigs, and fowl.
1--C + P + F = 100
2--10C + 3P + .5F = 100 or 100C + 30P + 5F = 1000
3--Multiplying (1) by 5 and subtracting from (2) yields 19C + 5P = 100
4--Solving for P, P = 20 - 19C/5
5--19C/5 must be an integer meaning that C must be evenly divisible by 5.
6--Thus, C must be 5 making P = 1, C = 5, and F = 94.
If you had a $100.00 to spend and need to buy a 100 animals, and cows cost
$10.00, pigs $3.00, chickens .50 cents each,how many of each can you buy?
Let C, P, and F be the numbers of cows, pigs, and fowl.
1--C + P + F = 100
2--10C + 3P + .5F = 100 or 100C + 30P + 5F = 1000
3--Multiplying (1) by 5 and subtracting from (2) yields 19C + 5P = 100
4--Dividing through by 5 gives P + 3C + 4C/5 = 20
5--4C/5 must be an integer as must be C/5
6--Let C/5 = k making C = 5k
7--Substituting (6) back into (3) gives 95k + 5P = 100 making P = 20 - 19k
8--k can only be 1 making C = 5, P = 1, and F = 94
Check: 10(5) + 3(1) + .5(94) = $100
Alternatively
Let C, P, and F be the numbers of cows, pigs, and fowl.
1--C + P + F = 100
2--10C + 3P + .5F = 100 or 100C + 30P + 5F = 1000
3--Multiplying (1) by 5 and subtracting from (2) yields 19C + 5P = 100
4--Solving for P, P = 20 - 19C/5
5--19C/5 must be an integer meaning that C must be evenly divisible by 5.
6--Thus, C must be 5 making P = 1, C = 5, and F = 94.
Answered by
Anonymous
I have to buy 100 animals, I have to use 100 dollars, I have to get at least 1 of each. horses(X) = 10 bucks. cows(Y) = 1 buck. chickens(Z) = 50 cents
Can you help me to find the answer
Can you help me to find the answer
Answered by
Chicken
Poopy dulrp
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.