Question
A street light is hung 18 ft. above street level. A 6-foot tall man standing directly under the light walks away at a rate of 3 ft/sec. How fast is the tip of the man's shadow moving?
I know I would've to set up a proportion.
18 / 6 = x + y / y
x = distance of man from light
y = length of shadow
x + y = tip of shadow
I know I would've to set up a proportion.
18 / 6 = x + y / y
x = distance of man from light
y = length of shadow
x + y = tip of shadow
Answers
You mean
18 / 6 = (x + y) / y
we know dx/dt, we need dy/dt
then the tip moves at dx/dt + dy/dt
18 y = 6x + 6 y
12 y = 6 x
12 dy/dt = 6 dx/dt
dy/dt = .5 dx/dt
so dy/dy = 3/2 = 1.5
and the sum
3+1.5 = 4.5 ft/sec
18 / 6 = (x + y) / y
we know dx/dt, we need dy/dt
then the tip moves at dx/dt + dy/dt
18 y = 6x + 6 y
12 y = 6 x
12 dy/dt = 6 dx/dt
dy/dt = .5 dx/dt
so dy/dy = 3/2 = 1.5
and the sum
3+1.5 = 4.5 ft/sec
Okay, I see what I did wrong. I did dy/dt = 6 instead of dy/dt = .5. Thanks a lot
x = distance of man from base of light
y = length of shadow
y/(y+x) = 6/18
Solve for y
18y = 6(y + x)
18y = 6y + 6x
12y = 6x
y = 6/12 x = 1/2 x
Find dy/dx of 1/2 x
dy/dx = 1/2
Find derivative with respect to t
dy/dt = 1/2 dx/dt
x is increasing 3 ft/sec
dx/dt = 3 ft/sec
dy/dt = 1/2 dx/dt
dy/dt = 1/2 (3)
dy/dt = 3/2 = 1.5 ft/sec
Shadow moving at the rate of 1.5 ft/sec
y = length of shadow
y/(y+x) = 6/18
Solve for y
18y = 6(y + x)
18y = 6y + 6x
12y = 6x
y = 6/12 x = 1/2 x
Find dy/dx of 1/2 x
dy/dx = 1/2
Find derivative with respect to t
dy/dt = 1/2 dx/dt
x is increasing 3 ft/sec
dx/dt = 3 ft/sec
dy/dt = 1/2 dx/dt
dy/dt = 1/2 (3)
dy/dt = 3/2 = 1.5 ft/sec
Shadow moving at the rate of 1.5 ft/sec
A street light is at the top of a 13 ft tall pole. A woman 6 ft tall walks away from the pole with a speed of 7 ft/sec along a straight path. How fast is the tip of her shadow moving when she is 35 ft from the base of the pole?
Related Questions
Lindsay is out one night and notices that her body casts a shadow that is 1.8m long when she is stan...
A strees light L hangs H feet above a flat straight street. A person h feet tall at point O directly...
Sarah is looking at a bird perched on top of a street light. Her line of sight, which is the diagona...