Asked by kyle
Find the point on the curve y=x^(1/2) that is a minimum distance from the point (4,0).
My book says you use the distance formula.
Then you let L = D^2 because the minimum value of D^2 will occur at the same value of x as the minimum value of D.
What is L, though.
My book says you use the distance formula.
Then you let L = D^2 because the minimum value of D^2 will occur at the same value of x as the minimum value of D.
What is L, though.
Answers
Answered by
bobpursley
L is the distance^2. You don't have to do that way, as I will demonstrate.
D^2=(4- x)^2+(0-y)^2 that comes from the distance formula.
Doing it the way the L=D^2 did:
L= ..
dL/dx=0=2(4-x)+2(y)dy/dx
but dy/dx = d(sqrt x)/dx= 1/2sqrtx
so 0=-2x+2sqrtx/2sqrtx or
2x=2
x= 1/2, y= 1/sqrt2
Now, lets do it without the L substitution:
D^2=(4- x)^2+(0-y)^2 that comes from the distance formula.
2D dD/dx=0=2(4-x)+2(y)dy/dx
again, dy/dx= d(sqrtx)/dx= 1/(2sqrtx)
so 0=-2x+2sqrtx/2sqrtx
and again x=1/2, y= 1/sqrt2
D^2=(4- x)^2+(0-y)^2 that comes from the distance formula.
Doing it the way the L=D^2 did:
L= ..
dL/dx=0=2(4-x)+2(y)dy/dx
but dy/dx = d(sqrt x)/dx= 1/2sqrtx
so 0=-2x+2sqrtx/2sqrtx or
2x=2
x= 1/2, y= 1/sqrt2
Now, lets do it without the L substitution:
D^2=(4- x)^2+(0-y)^2 that comes from the distance formula.
2D dD/dx=0=2(4-x)+2(y)dy/dx
again, dy/dx= d(sqrtx)/dx= 1/(2sqrtx)
so 0=-2x+2sqrtx/2sqrtx
and again x=1/2, y= 1/sqrt2
Answered by
Reiny
They are saying, let D^2 = L
so when later on you differentiate
the result for L is simpler than that for D^2
They are using the property that if a > b
then a^2 > b^2.
let the closest point be P(x,y)
then
L = D^2 = (x-4)^2 + (y-0)^2
= (x-4)^2 + (x^(1/2))^2
= (x-4)^2 + x
dL/dx = 2(x-4) + 1 = 0 for a min distance
2x - 8 + 1 = 0
x = 7/2
if x=7/2 , then y = √(7/2) = √7/√2 = √14/2
the closest point is ((7/2 , √14/2)
so when later on you differentiate
the result for L is simpler than that for D^2
They are using the property that if a > b
then a^2 > b^2.
let the closest point be P(x,y)
then
L = D^2 = (x-4)^2 + (y-0)^2
= (x-4)^2 + (x^(1/2))^2
= (x-4)^2 + x
dL/dx = 2(x-4) + 1 = 0 for a min distance
2x - 8 + 1 = 0
x = 7/2
if x=7/2 , then y = √(7/2) = √7/√2 = √14/2
the closest point is ((7/2 , √14/2)
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.