Asked by Anonymous
A rocket moves upward, starting from rest with an acceleration of 28.8 m/s2 for 4.13 s. It runs out of fuel at the end of the 4.13 s but does not stop. How high does it rise above the ground?
Answers
Answered by
bobpursley
Acceleration?
Thrust=mass*a
But thrust*distancefiring=energy put into the rocket. How high?
energy put into rocket=mgh
solve for h.
now distance firing: d=1/2 a t^2
Thrust=mass*a
But thrust*distancefiring=energy put into the rocket. How high?
energy put into rocket=mgh
solve for h.
now distance firing: d=1/2 a t^2
Answered by
drwls
Compute the distance that it rises while thrusting for time t. Call it X1
X1 = (1/2) a t^2
Also compute the velocity when acceleration stops. Call it Vmax.
Vmax = a t
Compute how much farther the rocket travels up until the maximum height (and zero velocity) is reached. Call that X2.
Maximum height is reached after additional time interval
t' = Vmax.g
X2 = Vmax*t' - (g/2)t'^2
The answer is X1 + X2.
X1 = (1/2) a t^2
Also compute the velocity when acceleration stops. Call it Vmax.
Vmax = a t
Compute how much farther the rocket travels up until the maximum height (and zero velocity) is reached. Call that X2.
Maximum height is reached after additional time interval
t' = Vmax.g
X2 = Vmax*t' - (g/2)t'^2
The answer is X1 + X2.
Answered by
tchrwill
Liftoff to burnout in 4.13 sec.
Burnout velocity Vbo = 28.8(4.13) = 123.84m/s.
Burnout altitude h1 = at^2/2 - gt^2/2 = 19(4.13)^2/2 = 162m.
From Vbo to V = 0, Vf = Vbo - gt = 0 = 123.84 - 9.8t or t = 12.636 sec.
From Vbo to V = 0, h2 = 123.84(12.636) - 9.8(12.636)^2/2 = 782m.
Total height H = h1 + h2.
Burnout velocity Vbo = 28.8(4.13) = 123.84m/s.
Burnout altitude h1 = at^2/2 - gt^2/2 = 19(4.13)^2/2 = 162m.
From Vbo to V = 0, Vf = Vbo - gt = 0 = 123.84 - 9.8t or t = 12.636 sec.
From Vbo to V = 0, h2 = 123.84(12.636) - 9.8(12.636)^2/2 = 782m.
Total height H = h1 + h2.
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.