Asked by john
Please help !!!!!
Find dy/dx by implicit differentiation.
(sin πx + cos πy)4 = 65
Find dy/dx by implicit differentiation.
(sin πx + cos πy)4 = 65
Answers
Answered by
drwls
I assume that the 4 is an exponent, and you mean
(sin ðx + cos ðy)^4 = 65
Differentiate both sides of the equation with respect to x.
4 (sin ðx + cos ðy)^3 *d/dx[sin ðx + cos ðy] = 0
[sin(pi*x) + cos(pi*y)]^3 * [(pi*cos(pi*x) - pi*sin(pi*y)*(dy/dx)] = 0
You can divide out the first [ ] term on the left. Only second [] term can be zero.
(pi*cos(pi*x) = pi*sin(pi*y)*dy/dx
dy/dx = (1/pi)cot(pi*y)
(sin ðx + cos ðy)^4 = 65
Differentiate both sides of the equation with respect to x.
4 (sin ðx + cos ðy)^3 *d/dx[sin ðx + cos ðy] = 0
[sin(pi*x) + cos(pi*y)]^3 * [(pi*cos(pi*x) - pi*sin(pi*y)*(dy/dx)] = 0
You can divide out the first [ ] term on the left. Only second [] term can be zero.
(pi*cos(pi*x) = pi*sin(pi*y)*dy/dx
dy/dx = (1/pi)cot(pi*y)
Answered by
john
(pi*cos(pi*x) = pi*sin(pi*y)*dy/dx
dy/dx = (1/pi)cot(pi*y)
I think the pi should be canceled, and the term cos and sin can not be identified as cot, because it is cos of x, and sin of y.
Is it right?
dy/dx = (1/pi)cot(pi*y)
I think the pi should be canceled, and the term cos and sin can not be identified as cot, because it is cos of x, and sin of y.
Is it right?
Answered by
drwls
pi can be cancelled, and yes, your are right about the cot.
Thank you for your alert corrections
Thank you for your alert corrections
Answered by
Matt
So, What do u think how we solve this? :)
There are no AI answers yet. The ability to request AI answers is coming soon!