Asked by NGOFAKA
if sqrt(y)=arctan(x), show that (1+x^2)dy/dx((1+x^2)dy/dx)=2
Answers
Answered by
drwls
If
sqrt(y)=arctan(x),
that means
y = [arctan(x)]^2
Let u = arctan x and use the chain rule
y = u^2
dy/dx = d(u^2)/du * du/dx
= 2 arctan(x)/(1 + x^2)
or
(1 + x^2)*dy/dx = 2 arctan x = 2 sqrt y
Are you sure you wrote
(1+x^2)dy/dx((1+x^2)dy/dx)=2 correctly?
That has (1+x^2)dy/dx appearing twice in a row. It doesnt look right
sqrt(y)=arctan(x),
that means
y = [arctan(x)]^2
Let u = arctan x and use the chain rule
y = u^2
dy/dx = d(u^2)/du * du/dx
= 2 arctan(x)/(1 + x^2)
or
(1 + x^2)*dy/dx = 2 arctan x = 2 sqrt y
Are you sure you wrote
(1+x^2)dy/dx((1+x^2)dy/dx)=2 correctly?
That has (1+x^2)dy/dx appearing twice in a row. It doesnt look right
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.