Asked by Leanna
A rational function g has the lines x=2 and x=-2 as vertical asymptotes, the line y=4 as a horizontal asymptote, and numbers 3 and 1 as zeros. Find a formula for g(x).
Answers
Answered by
MathMate
With x=2 and x=-2 as vertical asymptotes, the denominator of g(x) contains the factors (x-2) and (x+2).
To get 3 and 1 as zeroes, the numerator must contain the factors (x-3) and (x-1).
The horizontal asymptote of y=4 implies that lim x->∞ and x->-∞ g(x) = 4. This is the case when the highest powered term of the numerator divided by the highest power term of the denominator is 4.
Find g(x), and plot the graph to verify your answer.
To get 3 and 1 as zeroes, the numerator must contain the factors (x-3) and (x-1).
The horizontal asymptote of y=4 implies that lim x->∞ and x->-∞ g(x) = 4. This is the case when the highest powered term of the numerator divided by the highest power term of the denominator is 4.
Find g(x), and plot the graph to verify your answer.
Answered by
Leanna
So i got g(x)= (4x^2-16x+12)/(x^2-4)
is this correct?
is this correct?
Answered by
MathMate
Correct.
For you reference, see:
http://img94.imageshack.us/img94/1728/1283787460.png
For you reference, see:
http://img94.imageshack.us/img94/1728/1283787460.png
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.