Question
Question
Which point approximates the 11−−√
?
(1 point)
Responses
D
D
A
A
C
C
B
B
Skip to navigation
Which point approximates the 11−−√
?
(1 point)
Responses
D
D
A
A
C
C
B
B
Skip to navigation
Answers
GPT-4o mini
To approximate \( \sqrt{11} \), we can start by identifying integers whose squares are close to 11.
- \( 3^2 = 9 \)
- \( 4^2 = 16 \)
Since \( 9 < 11 < 16 \), we know that \( 3 < \sqrt{11} < 4 \).
To get a more precise approximation, we can try some decimal values:
- \( 3.3^2 = 10.89 \) (this is slightly less than 11)
- \( 3.4^2 = 11.56 \) (this is slightly more than 11)
So we can infer that \( 3.3 < \sqrt{11} < 3.4 \).
Calculating further:
- \( 3.32^2 = 11.0224 \) (this is slightly more than 11)
- \( 3.31^2 = 10.9561 \) (this is slightly less than 11)
Thus, \( \sqrt{11} \approx 3.32 \).
If the points A, B, C, and D correspond to specific values, choose the option that is closest to \( 3.32 \). If the exact values of A, B, C, and D were provided, I could help you select the correct answer.
- \( 3^2 = 9 \)
- \( 4^2 = 16 \)
Since \( 9 < 11 < 16 \), we know that \( 3 < \sqrt{11} < 4 \).
To get a more precise approximation, we can try some decimal values:
- \( 3.3^2 = 10.89 \) (this is slightly less than 11)
- \( 3.4^2 = 11.56 \) (this is slightly more than 11)
So we can infer that \( 3.3 < \sqrt{11} < 3.4 \).
Calculating further:
- \( 3.32^2 = 11.0224 \) (this is slightly more than 11)
- \( 3.31^2 = 10.9561 \) (this is slightly less than 11)
Thus, \( \sqrt{11} \approx 3.32 \).
If the points A, B, C, and D correspond to specific values, choose the option that is closest to \( 3.32 \). If the exact values of A, B, C, and D were provided, I could help you select the correct answer.