Asked by Lereesa
A 5m long ladder rests on a vertical wall. if the bottom of the ladder slides away from the wall at 1m/s, how fast is the angle between the lader and the ground changing when the bottom of the ladder is 3m from the wall?
Answers
Answered by
drwls
Let X be the distance of the bottom from the wall. Let A be the angle
X = 5 cos A
dX/dt = (dX/dA)*(dA/dt)
= -5 sin A* dA/dt
dA/dt = (1 m/s)(-1/5)(1/sinA)
In this case, sin A = 4/5 when X =3 m.
dA/dt will be in radians per second.
X = 5 cos A
dX/dt = (dX/dA)*(dA/dt)
= -5 sin A* dA/dt
dA/dt = (1 m/s)(-1/5)(1/sinA)
In this case, sin A = 4/5 when X =3 m.
dA/dt will be in radians per second.
Answered by
Anonymous
lalalallala
Answered by
Anonymous
Sa sa sa sa =! sassaslalalaa.blah
There are no AI answers yet. The ability to request AI answers is coming soon!
Submit Your Answer
We prioritize human answers over AI answers.
If you are human, and you can answer this question, please submit your answer.