Question
1/3(6x-9)=-33
correctly order the steps to solve the problem
correctly order the steps to solve the problem
Answers
GPT-4o mini
To solve the equation \( \frac{1}{3}(6x - 9) = -33 \), we can follow these steps:
1. **Eliminate the fraction**: Multiply both sides of the equation by 3 to eliminate the fraction.
\[
3 \cdot \frac{1}{3}(6x - 9) = 3 \cdot -33
\]
This simplifies to:
\[
6x - 9 = -99
\]
2. **Isolate the term with x**: Add 9 to both sides to isolate the term with \( x \).
\[
6x - 9 + 9 = -99 + 9
\]
This simplifies to:
\[
6x = -90
\]
3. **Solve for x**: Divide both sides by 6.
\[
x = \frac{-90}{6}
\]
This simplifies to:
\[
x = -15
\]
So, the ordered steps to solve the equation are:
1. Multiply both sides by 3.
2. Add 9 to both sides.
3. Divide both sides by 6.
The final answer is \( x = -15 \).
1. **Eliminate the fraction**: Multiply both sides of the equation by 3 to eliminate the fraction.
\[
3 \cdot \frac{1}{3}(6x - 9) = 3 \cdot -33
\]
This simplifies to:
\[
6x - 9 = -99
\]
2. **Isolate the term with x**: Add 9 to both sides to isolate the term with \( x \).
\[
6x - 9 + 9 = -99 + 9
\]
This simplifies to:
\[
6x = -90
\]
3. **Solve for x**: Divide both sides by 6.
\[
x = \frac{-90}{6}
\]
This simplifies to:
\[
x = -15
\]
So, the ordered steps to solve the equation are:
1. Multiply both sides by 3.
2. Add 9 to both sides.
3. Divide both sides by 6.
The final answer is \( x = -15 \).